À quoi servent les ordinateurs les plus puissants au monde ? Un exemple en cardiologie

Les arythmies cardiaques touchent des millions de personnes et provoquent 300 000 morts chaque année en Europe. Leurs mécanismes sont étudiés par simulation numérique mais nécessitent des calculs à une échelle encore jamais atteinte. En effet, le cœur humain comporte 10 milliards de cellules, chacune équipée d’un million de canaux ioniques capables de changer leur comportement en moins d’une nanoseconde. Faire des calculs au niveau de ces canaux représente une force de calculs dépassant de loin les capacités de calculs des ordinateurs actuels.

Comme l’arythmie cardiaque, de nombreux autres phénomènes sont difficiles à comprendre à cause de l’énorme complexité des systèmes qui les portent. Citons par exemple l’évolution du climat, l’étude des atomes ou du fonctionnement des systèmes microbiens.

Alors, les scientifiques transforment les phénomènes en « modèles » (des ensembles d’équations) qui seront par la suite transcrits sous forme de programme informatique appelé « simulation ». Les résultats de ces simulations peuvent ensuite être comparés avec des observations, afin de vérifier ou améliorer les modèles, et avec eux notre compréhension des phénomènes.

Pour obtenir des résultats en temps raisonnables, les simulations sont effectuées sur des ordinateurs surpuissants : des supercalculateurs.

Qu’est-ce qu’un supercalculateur ?

Les supercalculateurs sont des machines ayant la capacité d’effectuer des calculs complexes beaucoup plus rapidement qu’un ordinateur personnel. Par exemple, le supercalculateur Frontier, le plus rapide du monde actuellement, peut calculer jusqu’à un milliard de milliards d’opérations par seconde ! Une performance appelée « exascale » en référence à l’exaflop qui correspond à un milliard de milliards de calculs numériques.



Read more:
Calcul haute performance et ordinateurs superpuissants : la course à l’« exascale »

Depuis les années 1990, les ordinateurs sont devenus un milliard de fois plus puissant, et avec ce supercalculateur dépassant pour la première fois la barrière mythique de l’exaflop, de nouvelles opportunités s’ouvrent notamment aux scientifiques, principaux utilisateurs de ces machines.

Cependant, ces supercalculateurs représentent d’énormes investissements (le supercalculateur Jean-Zay installé à l’Idris a par exemple coûté environ 25 millions d’euros) et des dépenses énergétiques avec des factures qui peuvent atteindre des millions d’euros par an : alors, pourquoi toujours chercher à en augmenter la puissance ?

Des modèles mathématiques à la simulation de ce qui nous entoure

Certaines simulations nécessitent une grande puissance de calcul. C’est le cas par exemple des simulations qui tentent de comprendre l’évolution du climat, les maladies, anticiper les séismes ou plus généralement les catastrophes naturelles ou encore l’écoulement de l’air autour des ailes d’un avion. Ces phénomènes complexes engendrent plusieurs heures ou jours de calculs sur de grosses machines dites « de production » (des « mini-supercalculateurs » qui servent à tester les applications avant de les lancer sur de vrais supercalculateurs), avec énormément de données. Seul un supercalculateur va pouvoir effectuer de tels calculs en un temps raisonnable, traiter de gros volumes de données et augmenter la précision des simulations.

Pour comprendre comment c’est possible, imaginons qu’on ait un mur de dix kilomètres de long à construire et deux maçons à disposition pour faire ce travail. Pour construire efficacement le mur, le travail sera réparti entre les deux maçons de manière équitable et de manière à ce que les maçons puissent poser des briques du mur sans se gêner. Si nous avons maintenant deux-cents maçons à notre disposition, répartir le travail peut devenir complexe. Le mur sera construit beaucoup plus vite mais sa construction demandera de la logistique en amont pour que tous les maçons travaillent efficacement.

C’est la même chose avec les simulations. Le mur représente ici une simulation et les maçons des processeurs à notre disposition dans un supercalculateur. Plus on a de processeurs, plus la simulation devrait aller vite. Par contre, il y a un gros travail de planification nécessaire pour que ces processeurs se partagent les ressources et communiquent…

La suite est à lire sur: theconversation.com
Auteur: Emmanuelle Saillard, Chargée de recherche dans le domaine du calcul haute performance, Inria