Comment fonctionnent l’implant Neuralink et les autres interfaces cerveau-machine

Les interfaces électriques cerveau-machine implantables promettent des avancées majeures, aussi bien pour comprendre le fonctionnement du cerveau que pour compenser ou remplacer des fonctions perdues suite à un accident ou une maladie neurodégénérative : vision primaire, motricité, synthèse vocale ou écriture digitale.

Alors que ces interfaces sont encore loin d’être vraiment opérationnelles en clinique, elles représentent tout de même déjà pour certains l’espoir d’augmenter les capacités humaines, avec des applications à la fois sensorielles (vision nocturne par exemple) et fonctionnelles (augmentation des capacités mnésiques ou intellectuelles par exemple). Même si nombre de ces applications relèvent encore de la science-fiction, comme la transmission de sensation ou l’augmentation de nos performances intellectuelles, d’autres ne paraissent pas hors de portée, comme la vision dans l’infrarouge ou l’ultraviolet par exemple.

[Près de 80 000 lecteurs font confiance à la newsletter de The Conversation pour mieux comprendre les grands enjeux du monde. Abonnez-vous aujourd’hui]

Même si des questions éthiques accompagnent le développement des interfaces cerveau-machine chez Neuralink, la très médiatique entreprise d’Elon Musk, le propos de notre article est d’expliquer leur fonctionnement technique, leurs enjeux technologiques et le contraste entre les espoirs qu’elles suscitent et ce qu’elles sont actuellement capables de réaliser.

En effet, les dispositifs actuels sont confrontés à de multiples verrous technologiques et conceptuels. Les contraintes techniques limitent pour l’instant leur utilisation à des cas cliniques précis, où les risques liés à l’insertion d’un implant sont contrebalancés par l’estimation d’un bénéfice immédiat ou futur pour les patients. On est ainsi très loin de pouvoir utiliser ces implants en routine clinique et dans la vie de tous les jours, et qui plus est pour des applications ludiques ou encore d’augmentation des capacités humaines.

Où en sont les implants actuels, et notamment l’implant Neuralink ?

Pour la partie médicale et la compréhension du cerveau, les interfaces en développement au sein de laboratoires académiques et industriels offrent déjà des perspectives intéressantes. Mais peu d’outils académiques offrent à l’heure actuelle une solution complètement implantée avec autant d’électrodes et de quantité de données que celles de l’interface de Neuralink.

Celle-ci vise à mettre en place une interface cerveau-machine implantable en une matinée, à la fois pour le domaine médical pour des personnes parlysées, mais aussi pour permettre à tout un chacun de contrôler son smartphone, un jeu vidéo, ou à terme d’augmenter ses capacités humaines. Pour cela, elle vise une technologie d’implants cérébraux enregistrant un grand nombre de neurones, qui n’aurait pas d’impact esthétique et ne présenterait aucun danger – une telle technologie n’existe pas à l’heure actuelle.



Read more:
Vers les prothèses de cerveau : quand neurones artificiels et naturels dialoguent

Si l’implant de Neuralink s’avère fonctionner de manière robuste et s’il obtient l’approbation des agences de santé pour une utilisation chez l’humain, il pourrait permettre d’avancer vers un décodage plus précis de l’activité neuronale, la conception de neuroprothèses cliniques et la compréhension de modes de fonctionnement du cerveau inaccessibles jusqu’à présent.

Comment ça marche ? De l’implant neuronal à la neuroprothèse

Dans la littérature et l’actualité, on retrouve indistinctement les termes d’« interface électrique cerveau-machine », de « neuroprothèse » ou d’« implant neuronal ». Une « neuroprothèse » est un type d’interface cerveau-machine qui va permettre de suppléer ou de remplacer une fonction perdue. Tout comme le système nerveux envoie ou reçoit des informations de son environnement, les neuroprothèses vont capter de l’information de notre environnement à travers des systèmes artificiels pour la renvoyer vers le système nerveux ou bien capter l’information du système nerveux pour la renvoyer, soit vers lui-même, soit vers notre environnement à l’aide de dispositifs artificiels.

La neuroprothèse ou l’interface électrique cerveau-machine est constituée de…

La suite est à lire sur: theconversation.com
Auteur: Clément Hébert, Chargé de recherche implants Neuronaux, neuroprothèses, Inserm U1216 Grenoble Institut des Neurosciences, Université Grenoble Alpes (UGA)