Course à l’ordinateur quantique : comment progresse ce chantier titanesque en pratique

Pour mieux comprendre l’ordinateur quantique et la course technologique qu’il génère, nous vous proposons ici le second opus de notre série. Après un premier article sur la naissance du concept d’ordinateur quantique, nous explorons ici comment il pourrait être réalisé en pratique et les défis scientifiques et technologiques à relever.


Le prix Nobel de physique 2022 vient d’être décerné à trois pionniers de l’information quantique, dont un Français, Alain Aspect. Leurs travaux ont posé les bases de la « seconde révolution quantique », qui permet de rêver à la réalisation d’un ordinateur quantique.

De fait, l’ordinateur quantique fait des apparitions de plus en plus remarquées dans la presse généraliste, et nombreux sont les lecteurs qui pourraient en déduire que l’humanité dispose déjà d’instruments surpuissants capables de battre à plate couture nos bons vieux ordinateurs.

En effet, en se basant sur les principes fondamentaux de la physique quantique, les chercheurs et les industriels conjuguent leurs efforts pour réaliser l’ordinateur quantique ultime, dit « universel ». Et s’il est vrai que les accomplissements récents dans le domaine sont aussi impressionnants que prometteurs, avec à ce jour, le plus gros ordinateur quantique annoncé contenant 127 « bits quantiques », il faut bien voir que ce dernier n’a pas été conçu pour être capable de réaliser des calculs utiles, mais comme une « preuve de concept ».

Ainsi, à l’heure actuelle, un ordinateur quantique universel opérationnel reste un Graal inaccessible, dont personne ne peut encore prédire la réussite avec certitude.

En revanche, nous sommes déjà sur le point de disposer de machines quantiques plus petites, appelées « simulateurs quantiques », qui seront utiles pour résoudre des problèmes spécifiques en physique, en ingénierie, en chimie ou encore en pharmaceutique.

La promesse quantique

Un cryostat d’IBM, utilisé pour conserver l’ordinateur quantique de 50 qubits – des circuits supraconducteurs – à des températures compatibles avec son fonctionnement.
IBM/Flickr, CC BY-ND

Un ordinateur quantique « universel » pourrait en théorie effectuer tous les calculs que peut faire un ordinateur classique, mais plus efficacement. En réalité, ceci ne sera possible que pour certains calculs, qui mettront en œuvre des algorithmes spécifiquement conçus pour l’informatique quantique. L’ordinateur quantique rendrait alors possibles des calculs aujourd’hui infaisables parce qu’ils prendraient trop de temps.

Par exemple, des milliers de milliards d’années seraient nécessaires sur un supercalculateur dernier cri pour factoriser des nombres à quelques centaines de chiffres, comme ceux utilisés pour sécuriser nos communications, mais il faudrait seulement quelques heures à un ordinateur…

La suite est à lire sur: theconversation.com
Auteur: Aymeric Delteil, Chercheur CNRS, Groupe d’étude de la matière condensée, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) – Université Paris-Saclay