Fusion nucléaire : une avancée majeure, mais le chemin reste long

Le 5 Décembre 2022 marquera un tournant dans la recherche sur la fusion nucléaire. Plus de 100 ans après que l’astrophysicien britannique Arthur Eddington émit l’idée que la fusion serait « une source d’énergie inépuisable si maîtrisée », le National Ignition Facility (NIF) aux États-Unis a réussi, pour la première fois, à générer plus d’énergie par des réactions de fusion que celle nécessaire à la provoquer. Que signifient ces résultats ? Pourquoi est-ce une vraie avancée pour la recherche ? Et quelles conséquences pour le développement de la fusion comme source d’énergie bas-carbone ?

La fusion nucléaire est le procédé qui se produit au cœur des étoiles – notre soleil fusionne environ 600 millions de tonnes d’hydrogène par seconde générant en 1 seconde autant d’énergie que l’humanité n’en utilise en une année entière (418 exajoules en 2021). La majorité des recherches se concentrent sur la fusion entre 2 isotopes de l’hydrogène, le deutérium et le tritium, qui produit un neutron très énergétique et un atome d’hélium. Cette réaction est en effet plus accessible que celle se produisant au cœur du soleil.

Pour provoquer la fusion, il faut des conditions extrêmes, notamment des températures de l’ordre de 100 millions de degrés. Atteindre ces températures nécessite un apport conséquent d’énergie, et pour que la fusion soit profitable, il faut qu’elle génère beaucoup plus d’énergie qu’il n’en faut pour la provoquer. Le rapport entre l’énergie apportée et celle produite est appelée le gain, s’il est supérieur à 1 alors la réaction de fusion aura libéré plus d’énergie que celle apportée.

Il y a deux voies possibles pour réaliser la fusion nucléaire : le confinement magnétique (ITER, par ex.) qui utilise des aimants puissants pour confiner le plasma pendant des durées très longues, et le confinement inertiel qui induit la réaction par des impulsions très brèves et intenses. Le NIF est une installation de fusion inertielle qui utilise des lasers très puissants.

Jusqu’à récemment, aucune expérience n’avait réussi à obtenir un gain supérieur à 1. Le record pour la fusion par confinement magnétique, était de 0,65 dans le tokamak JET (UK) en 1997, et le NIF avait obtenu un gain de 0,7 en août 2021. Il faut noter que ce gain est pris au niveau du plasma (l’état de la matière à très hautes températures) et pas au niveau de l’ensemble de l’installation. Ce même NIF vient pour la première fois d’atteindre un gain supérieur à 1. Pour une énergie injectée de 2,1 mégajoules (via 192 lasers), la fusion a produit une énergie de 3,15 mégajoules, soit un gain de 1,5 !

Pourquoi est-ce une vraie avancée ?

Au-delà de l’aspect symbolique, ce résultat représente une vraie avancée scientifique. Le NIF utilise un schéma dit « d’attaque indirecte » : le combustible (une bille en diamant de 2 mm de diamètre contenant du deutérium et du tritium) n’est pas directement chauffé par les 192 faisceaux laser. En effet, il est placé dans un « Hohlraum » (un cylindre métallique) qui est chauffé par les lasers pour produire des rayons X qui vont chauffer et comprimer le combustible.

Cette approche présente l’avantage de rendre l’alignement des lasers plus aisé, mais présente le désavantage que seule une partie de l’énergie des lasers (10-20 %) est convertie en rayons X et chauffe le combustible. Au niveau du combustible, l’énergie de fusion produite est donc largement supérieure à l’énergie incidente : le plasma est auto-chauffé. On entre dans le régime des plasma auto-entretenus, un régime de la physique des plasmas qu’il était impossible d’étudier jusque récemment.

Beaucoup de voix se sont élevées pour relativiser les résultats obtenus en pointant le fait que les lasers nécessitent près de 400 mégajoules d’énergie pour pouvoir fournir les 2 mégajoules injectés dans NIF. Il faut cependant garder en tête que le NIF n’a pas été conçu pour générer de l’électricité, mais pour démontrer l’ignition. Surtout, cette installation (tout comme le laser MégaJoule en France) vise à permettre de simuler des explosions nucléaires (les essais nucléaires en condition réelles étant interdits) et est largement financé par le Department of Defense américain. La construction du NIF a démarré en…

La suite est à lire sur: theconversation.com
Auteur: Greg De Temmerman, Chercheur associé à Mines ParisTech-PSL. Directeur général de Zenon Research, Mines Paris